skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Deringer, Tessa"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Zhou, Jun (Ed.)
    IntroductionClimate change has increased the need for forest restoration, but low planting success and limited availability of planting materials hamper these efforts. Invasive plants and their soil legacies can further reduce restoration success. Thus, strategies that optimize restoration are crucial. Assisted migration and inoculation with native microbial symbiont communities have great potential to increase restoration success. However, assisted migrants can still show reduced survival compared to local provenances depending on transfer distance. Inoculation with mycorrhizal fungi, effective if well-matched to plants and site conditions, can have neutral to negative results with poor pairings. Few studies have examined the interaction between these two strategies in realistic field environments where native plants experience the combined effects of soil legacies left by invasive plants and the drought conditions that result from a warming, drying climate. MethodsWe planted two ecotypes (local climate and warmer climate) ofPopulus fremontii(Fremont cottonwoods), in soils with and without legacies of invasion byTamarixspp. (tamarisk), and with and without addition of native mycorrhizal fungi and other soil biota from the warmer climate. ResultsFour main results emerged. 1) First year survival in soil legacies left behind after tamarisk invasion and removal was less than one tenth of survival in soil without a tamarisk legacy. 2) Actively restoring soil communities after tamarisk removal tripled first year cottonwood survival for both ecotypes, but only improved survival of the warmer, assisted migrant ecotype trees in year two. 3) Actively restoring soil communities in areas without a tamarisk history reduced first year survival for both ecotypes, but improved survival of the warmer, assisted migrant ecotype trees in year two. 4) By the second year, inoculated assisted migrants survived at five times the rate of inoculated trees from the local ecotype. DiscussionResults emphasize the detrimental effects of soil legacies left after tamarisk invasion and removal, the efficacy of assisted migration and restoring soil communities alongside plants, and the need to thoughtfully optimize pairings between plants, fungi, and site conditions. 
    more » « less
  2. Mycorrhizal restoration benefits are widely acknowledged, yet factors underpinning this success remain unclear. To illuminate when natural regeneration might be sufficient, we investigated the degree mycorrhizal fungi would colonizePopulus fremontii(Fremont cottonwood) 2 years after the restoration of a riparian corridor, in the presence of an adjacent source. We compared colonization levels across plant populations and ecotypes, and from trees in the planted area to those in natural source populations. Four findings contribute to the theory and application of host–symbiont interactions. (1) Median ectomycorrhizal colonization of trees in the planted area was less than one‐tenth of that within natural source populations (p < 0.05), suggesting that even with adjacent intact habitat, sluggish regeneration would make proactive mycorrhizal restoration beneficial. (2) Within the planted area, median ectomycorrhizal and arbuscule colonization of trees sourced from greater distances were less than one‐third of that for trees sourced locally (p < 0.05), suggesting translocation poses barriers to symbioses. (3) Changes in colonization did not align with plant ecotypes, suggesting that geographic scales of selection for plants and fungi differ. (4) Slight increases in median mycorrhizal colonization (from 0% to 5%) were strongly correlated with increased survival for the plant provenance with lowest survival (r2 = 46% andrs = 48%,p < 0.05), suggesting mycorrhizae are particularly beneficial when plants are under stress (including translocation‐induced stress). This study is novel in demonstrating that mycorrhizal regeneration is slow even in the presence of adjacent intact habitat, and that when colonization could seem negligible, it may still have biological significance. 
    more » « less